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Abstract
The characterization of microstructures in three dimensions is re-
viewed, with an emphasis on the use of automated electron back-
scatter diffraction techniques. Both statistical reconstruction of poly-
crystalline structures from multiple cross sections and reconstruction
from parallel, serial sections are discussed. In addition, statistical re-
construction of second-phase particle microstructures from multiple
cross sections is reviewed.
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MOTIVATION
We review briefly the motivation for the characterization of materials in three dimen-
sions. Most materials of practical value are polycrystalline, and the arrangement of
the crystals or grains in space is usually sufficiently complicated that plane sections do
not suffice to describe microstructure quantitatively. Furthermore, most properties,
even in materials with cubic crystal symmetry, are anisotropic, which means that even
small deviations from uniform (random) texture lead to anisotropic behavior of the
polycrystal. Elastic response is mildly anisotropic in most cases, and the plastic re-
sponse of a material can be strongly anisotropic. A further complication is that many
processing routes lead to heterogeneous microstructures, so it is often necessary to
characterize the gradients in microstructure and accept that there is not a single rep-
resentative microstructure. Although it is an accepted axiom of materials science that
properties depend on microstructure, it is worth pointing out the great variety of
important problems that are known to be sensitive to microstructure, such as surface
roughening, intergranular corrosion, fatigue crack initiation and initiation, fracture
toughness, hot ductility dip cracking, electromigration, and hillock formation.

In surface roughening, for example, three-dimensional characterization is im-
portant because the grains beneath the surface layer may affect the development of
variable surface height as strain increases (1). Intergranular corrosion in its more se-
rious manifestations leads to extensive penetration of the chemical reactions along
grain boundaries. Such attack is necessarily three dimensional in nature, and so it
is self-evident that comparisons of predictions of vulnerability with grain boundary
character require three-dimensional characterization. The fundamentals of fatigue
crack initiation have been studied predominantly in pure single-phase metals and
relatively little in engineering alloys. Nevertheless, in many real-life situations, a
substantial fraction of the useful fatigue life is associated with the crack initiation
phase. Cracks often develop from local variations in composition or structure such as
constituent particles in aluminum alloys (2). They then grow in a seemingly irregular
manner, which is presumed to be crystallographic, although quantitative evidence is
lacking as yet. Again, three-dimensional characterization will self-evidently be needed
in this case.

SCOPE OF PAPER
This paper attempts to review the current state of knowledge on the characterization
of microstructures using automated electron back-scatter diffraction (EBSD), also
known as orientation imaging microscopy (OIMTM). EBSD is assumed to be a suf-
ficiently familiar technique about which readers can consult appropriate reviews as
needed (3, 4). Instead, this paper focuses on the use of EBSD to characterize three-
dimensional materials. The method provides very complete information on lattice
orientation, which permits many aspects of microstructure to be addressed. In addi-
tion to purely EBSD-based approaches, mention is also made of three-dimensional
characterization that employs other sources of data, such as synchrotron radiation
and optical microscopy for particle characterization.
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The major sections of the review are as follows: implications of three-dimensional
characterization, issues that arise in performing such characterization, possible tech-
nical approaches, statistical reconstruction of three-dimensional microstructures,
reconstruction from serial sections, statistical reconstruction of distributions of
second-phase particles, the use of synchrotron radiation for (complete) three-
dimensional microstructures, and remaining challenges in three-dimensional char-
acterization. Our view is that modern materials characterization goes far beyond the
traditional provision of micrographs exhibiting typical microstructures with qualita-
tive interpretation and, possibly, a measurement of grain size. Instead, the materials
scientist must expect to be responsible for providing three-dimensional digital mi-
crostructures that are representative of a given material and that provide quantitative
information on the distribution of structural parameters.

IMPLICATIONS
The characterization of materials should always be performed with a goal in mind.
The reason for needing a goal is that characterization, especially in three dimensions,
is expensive. Most materials have complex microstructures, and it is infeasible to mea-
sure all possible microstructural features. Even if the focus is on a particular feature
such as second-phase particles, the segment of the population that one attempts to
measure depends on the motivating problem. For example, strength depends mainly
on the mean obstacle spacing, which means that the population must be characterized
to, say, +/− two standard deviations of the mean. If, in contrast, fatigue crack initi-
ation is of interest, then one measures the upper tail of the distribution. The second
example implies larger areas or volumes but lower resolution images as compared
with the first.

The second, related issue is that of the representative volume element. Certain
types of problems require instantiation of a material’s digital representation for a
simulation of annealing or deformation. Again, the choice of problem governs the
size of the volume to be instantiated. A simple example is that of plastic strength
of a polycrystal for which the orientation of each crystal relative to the principal
stress directions affects the effective yield stress. In this case, the representation of
the variability of orientation in a polycrystal requires several thousand independent
orientations (and therefore grains) to be included in the model. Matthies & Wagner
(5) have discussed the issue of how many individual orientations are required to
represent a given texture to a specified accuracy. In contrast, the interaction between
a particle and a surrounding grain is dominated by local behavior, and the volume
can be limited to a single grain or perhaps a single shell of nearest-neighbor grains.

Implicit in these discussions is the choice of microstructural element. Plasticity
problems generally focus on the grain structure, and so the statistics of interest are
likely to be size and crystal orientation. The distributions of these quantities are both
three-dimensional, with morphological orientation adding another two dimensions.
Note that “size” assumes that a simple, regular shape such as an ellipsoid or a cuboid
provides an acceptable representation of grain shape. Less regular shapes obviously
require more complex descriptions possibly involving spectral analysis. Methods such
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as Fourier transforms, generalized spherical harmonics, and kernel particle analysis
have been developed for such needs (6; M.D. Uchic, M.D. Graef, R. Wheeler, &
D.M. Dimiduk, unpublished data).

ISSUES
The basic internal structural units, the grains, are not uniform in size but exhibit
distributions in shape, size, and orientation. Aspect ratios can vary enormously from
nearly spherical to nearly laminate. The reason for these inconvenient features is
processing history. Choice of particle source for compaction, particle consolidation,
solidification practice, rolling, extrusion, recrystallization, and grain growth all in-
volve deformation or coarsening, which in turn leads to these distributions. That
grains obviously must fill space, coupled with the distribution in size, means that they
cannot have simple, regular shapes such as spheres, cubes, or ellipsoids. Of course,
idealized microstructures have been generated with special geometrical forms such
as cube octahedra to tackle certain problems, but even these do not lend themselves
to representation of realistic distributions of shape and size (7).

An interesting exception to the generally pessimistic view of mathematical meth-
ods available to microstructural science lies in powder packing, which is not the main
focus of this review, although it is of general interest and so is only briefly mentioned
here. Torquato’s group, for example, has developed extensive analysis on the topic of
two-phase microstructures (8). A rich set of techniques for building microstructures
and describing them in terms of radial distribution functions and correlation func-
tions is available. Such an approach builds on earlier work by Corson (9–12), Adams
et al. (13), Lee et al. (14), and many others.

Other types of composites are simpler to represent; laminated composites, for
example, are possibly the simplest. Any composite with a monodisperse structural el-
ement (particles, layers, fibers) has less geometrical complexity than do polycrystals.
Notwithstanding this apparently dismissive statement, there is considerable complex-
ity involved in representing woven fiber composites. Such composites have a very wide
range of applications from airplanes to body armor. The interleaving of fibers in three
dimensions raises issues that are analogous to those in polycrystals: To what level of
detail must one represent the composite? Is it necessary to describe the individual
fibers, or is it sufficient to describe bundles of fibers? Again, this topic diverts us from
the main focus of three-dimensional microstructures based on diffraction scanning,
so no further detail is given.

This review makes numerous references to distributions. For quantities such as
particle size, the distributions are simple to deal with. There has been extensive debate
over the appropriate theoretical form to fit experimental measurements because few
of the measured distributions conform to the standard normal distribution or bell
curve, even when the data are transformed to the logarithm of the size measure
(e.g., References 15–17). Crystal orientation, however, is not so simple to describe
because of the inherently spherical nature of rotations in three dimensions. In effect,
to describe the texture of a polycrystal in a statistical sense, one must develop a
distribution over the group of general three-dimensional rotations, or SO(3). A great
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variety of parameters can and have been used, although Euler angles, Rodrigues
vectors, and (unit) quaternions have proven most useful.

Texture
Texture is a substantial topic, so we summarize the basic aspects here while providing
references to the standard works (18–21). Texture means crystallographic preferred
orientation in which one seeks to quantify the relationship between the crystal axes
of grains in a polycrystal and reference frame, defined as a set of axes associated with
the external shape of the polycrystalline body. Most often the term texture is used
in conjunction with X-ray pole figures, which are the most efficient experimental
means of quantifying the average texture of a (polycrystalline) material. Most funda-
mental is the understanding that crystallographic orientation requires specification
of a rotation. This rotation is most often used as an axis transformation to express
properties known in crystal axes into properties in the frame of the material. The
second vital piece of information is that rotations can be expressed in a wide variety
of mathematical and not-so-mathematical parameterizations, all of which have three
independent parameters. The standard symbol for orientation is g, but other symbols
are used, especially for the less-well-known but very useful Rodrigues-Frank vectors
and quaternions.

Table 1 provides a summary of commonly used parameterizations of crystallo-
graphic orientation. The entries are ordered by familiarity to materials scientists.
Specification of a plane and direction by Miller indices is most intuitive but requires
translation for numerical work. Euler angles are common because of the convenience
of using series expansion methods based on generalized spherical harmonics. Seri-
ous computational work, however, uses quaternions for speed and simplicity (22, 23).
Axis-angle descriptions are the most intuitive description of grain boundaries because
of the intimate connection to crystal geometry, and Rodrigues-Frank vectors have
some very attractive features for both representation and certain types of computa-
tion. A few conversion formulae are given in Table 1 to provide some clarification
of the meaning of the parameters. There are formulae available in the standard texts
to convert between any pair of representations (18, 19).

The next step in understanding and using texture is to become familiar with the
characteristic preferred orientations of the particular material and processing history
of interest. This is far too broad a subject for treatment here, and the reader is referred
to Kocks et al. (19) and Randle & Engler (21) for detailed information and analysis.

We now introduce the concept of misorientation, !g, or the difference in orien-
tation between two crystals, to which the properties of boundaries can be related.
Mathematically, the misorientation is obtained by combining one orientation with
the inverse of the other:

!g = g2 · g−1
1 . 1.

The choice of which of the two orientations should be the inverse rotation depends
on the representation used and whether the misorientation is to be expressed in the
reference frame or in the local, crystal frame (24). The most common approach by far
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Table 1 Summary of parameterizations of texture and orientation

Name Parameters Conversion formulae
Texture component: specifies
alignment of a plane normal
with the third sample
direction [e.g., normal
direction (ND)] and a
crystal direction with the first
sample direction [e.g., rolling
direction (RD)]. Each normal
and direction is, in effect, a
unit vector, and they must be
perpendicular, yielding three
independent parameters.

(hkl)[uvw]
b = (u, v, w)

√
u2 + v2 + w2

// RD

n = (h, k, l)
√

h2 + k2 + l2
// ND

Euler angles: specify a triple of
rotations (transformations)
about the Z, X, and Z
directions. Many variants of
Euler angles are known.

g = g(φ1, #, φ2)

gij =





cos ϕ1 cos ϕ2 − sin ϕ1 cos ϕ2 + sin ϕ2 sin #

sin ϕ1 sin ϕ2 cos # cos ϕ1 sin ϕ2 cos #

− cos ϕ1 sin ϕ2 − − sin ϕ1 sin ϕ2 + cos ϕ2 sin #

sin ϕ1 cos ϕ2 cos # cos ϕ1 cos ϕ2 cos #

sin ϕ1 sin # − cos ϕ1 sin # cos #





(Orthogonal) matrix: The
coefficients of an axis
transformation are defined by
ai j = ê ′

i · ê j , where the e are
the unit basis vectors in the
primed and unprimed
coordinate systems. All
columns and rows are unit
vectors that reduce the
number of independent
coefficients to three.

gij =




a11 a12 a13
a21 a22 a23
a31 a32 a33



 g = Crystal

Sample


b1 t1 n1
b2 t2 n2
b3 t3 n3





Axis-angle: The rotation axis is
specified by a unit vector, n,
and the rotation angle by θ .
For grain boundaries, the
rotation axis is often specified
in crystallographic terms with
a set of Miller indices.

g = g(θ , n) gij = δij cos θ + ni n j (1 − cos θ ) +
∑

k=1,3
εijknk sin θ

Rodrigues-Frank vector: the
rotation axis but scaled by the
tangent of the semiangle. In
this space, all rotations that
share a common rotation axis
lie on a straight line.

ρ = (ρ1, ρ2, ρ3)
= tan(θ/2)n ρ1 = tan

(
#

2

)
sin

(
φ1 − φ2

2

) /
cos

(
φ1 + φ2

2

)

ρ2 = tan
(

#

2

)
cos

(
φ1 − φ2

2

) /
cos

(
φ1 + φ2

2

)

ρ3 = tan
(

φ1 + φ2

2

)

(Continued )
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Table 1 (Continued )

Name Parameters Conversion formulae
Quaternion: closely related to
the Rodrigues-Frank vector.
The ni are the components.
For rotations, the quaternion
is always of unit length. The
quaternions representing θ

and 2π-θ are the negative of
each other but represent the
same orientation (2-to-1
mapping).

q = (q1, q2, q3, q4)
= (sin(θ/2)n1,
sin(θ/2)n2, sin(θ/2)n3,
cos(θ/2))

q1 = sin
(

#

2

)
cos

(
φ1 − φ2

2

)

q2 = sin
(

#

2

)
sin

(
φ1 − φ2

2

)

q3 = cos
(

#

2

)
sin

(
φ1 + φ2

2

)

q4 = cos
(

#

2

)
cos

(
φ1 + φ2

2

)

is to express misorientations in crystal coordinates because that is the physically more
meaningful approach in almost all cases. If the orientations are expressed as matrices
representing axis transformations, then the misorientation (in the crystal frame) is
calculated with the same expression as above a substitution of the transpose of the
second matrix for the inverse.

Finally, we can illustrate the complicated effect of crystal symmetry, which re-
sults in many physically equivalent descriptions of any misorientation because of the
multiplicity of ways in which crystal axes can be labeled. The following expression
summarizes the way in which the smallest possible rotation angle can be identi-
fied. The formula for determining the smallest misorientation angle, θ∗, is as follows,
where the symmetry operators, O, are drawn from the set of n members of the (proper
rotation) point group appropriate to the crystal symmetry:

θ∗ = min

{

cos−1

(
trace

(
O(i )gB g−1

A O( j )
)
− 1

2

)

,

cos−1

(
trace

(
O(k)gAg−1

B O(l)
)
− 1

2

)}

, {i, j, k, l = 1, n} 2.

The order of the two orientations can be interchanged without affecting the meaning
of the result, so for the n = 24 symmetry operators in O(432), there are 1152 combina-
tions that must be calculated to find the unique description of misorientation for grain
boundaries in cubic materials. Inspection of this expression reveals that it can also be
used to specify the misorientation in a unique way. In fact, one can choose specific
symmetry operators in such a way as to always locate the misorientation axis in a par-
ticular asymmetric unit such as the standard stereographic triangle for cubic materials.
Detailed discussions of the mathematics can be found in Morawiec’s (20) book.

TECHNICAL APPROACHES
Just as the resolution used for imaging is dictated by the measurement objectives,
so too is the choice of geometrical representation of microstructure. Is it acceptable,
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for example, to use a building-block approach with cubes (for equiaxed grains) or
bricks (for elongated grain shapes) (e.g., Reference 25)? Provided that the detailed
grain shape does not significantly affect the result or the arrangement of nearest-
neighbor grains, such geometries are simple to construct. It is also simple to populate
with orientations, provided that only the orientation distribution is significant for the
properties of the polycrystal.

If, however, we accept the necessity of a representation of the polycrystal mi-
crostructure with an accurate representation of grain shape and connectivity to other
grains, then we have at least two possibilities:

1. a regular grid discretization of the three-dimensional volume [easier geome-
try, but less efficient and less compatible with finite element method (FEM)
systems], and

2. vertex-edge-volume discretization of the three-dimensional volume (more
complex geometry but more efficient and more compatible with meshing for
FEM systems).

Then we must consider possible sources of information. At present, there are three
obvious possibilities:

1. Direct measurement, such as three-dimensional X-ray (diffraction) microscopy,
generates information on a regular grid.

2. Indirect measurement, such as serial sectioning, also generates information on
a regular grid but only after a nontrivial stage of registration or alignment
of the successive layers. This has been extensively researched in the biological
community because of the importance to cellular structures. For reconstruction
from serial sections of polycrystalline solids, it has been considered by a number
of authors (26, 27) but is reexamined briefly here.

3. Statistical reconstruction based on limited cross-sectional information but on
more than one sectioning plane; this is the main focus of this paper. Statistical
methods for reconstructing microstructures have been developed in a number
of fields (e.g., 28–35).

STATISTICAL RECONSTRUCTION: GRAIN-BASED

Grain Geometry

For a polycrystalline material, the critical feature is that of the grains. The generation
of a representative digital microstructure therefore depends on obtaining a reasonable
spatial arrangement of the grains along with their crystallographic orientations. An-
other critical feature is the requirement for statistical homogeneity of the material: it
must be possible to generate cross sections in different locations of the material while
characterizing what is, statistically, the same material. A choice is then required as to
how to construct the geometry. The traditional approach for composites apparently
has been to distribute the required volume fraction of second phase in the simulation
domain and then to devise an algorithm to rearrange until sufficiently good agreement
is obtained with some set of statistics obtained from experimental data (8). For an ex-
ample of the recent application of genetic algorithms to this problem, see Basanta et al.
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(36, 37). The issue that arises with polycrystalline microstructures, however, is the
number of distinct structural units, i.e., grains, that must be manipulated to opti-
mize a packing. That is, it is no longer sufficient to color the voxels black or white.
Rather, one must number them according to the grain or orientation to which they
belong. Each grain is reasonably compact in shape, which means that transferring
individual voxels would result in either very long simulation times or fragmented
grain structures. Therefore, it is sensible to use a more complex geometrical unit to
represent a grain and seek an algorithm that optimizes the packing of the unit shape.
The natural choice appears to be the ellipsoid because of its convenient mathematical
properties.

Methods have been developed for packing ellipsoids [see work by Torquato (8)
and Sastry and colleagues (38)]. In general, however, close packing of nonspherical
objects is a difficult problem. Numerical methods are therefore used to compensate
for lack of analytical approach. Because we want to fill space, which is slightly different
from optimal packing (of incompressible objects) we allow for overlap as well as gaps.
The objective function is written accordingly; variations in the functional form of the
objective function remain largely unexplored, however. The method, referred to here
as Microstructure Builder, starts with an overpacked structure and swaps ellipsoids in
and out (mostly out) to achieve an optimal arrangement. The initialization has had
some attention but only on an empirical basis. If a packing of grains is known, it is
possible to fit an ellipsoid to each grain and use this ensemble of grains as an initial
condition.

Microstructure Builder requires statistical data on the morphology of the grains
in the polycrystal to be represented, which includes distributions of sizes and shapes.
It also requires data on the texture (orientation distribution) and the grain boundary
character (misorientation distribution). Although three-dimensional information is
ideal, the method has been developed around two-dimensional cross-sectional data
sources. A natural source of such information is that of EBSD maps (4, 18). At least two
orthogonal planes of information are required, one perpendicular to the sample nor-
mal direction (ND) and the other perpendicular to the sample rolling direction (RD).
Orthogonal planes are required to obtain information on the ellipsoid-shape distri-
bution function. The ellipsoids used here are assumed to have their semiaxes aligned
with the specimen axes although the method. Variable ellipsoid alignment would obvi-
ously be useful for certain microstructures, especially in those with elongated needle-
shaped grains, which can be found in some nitrides. However, if the grain boundary
character is not required to be fitted in the digital microstructure, a combination of
conventional metallography (for grain shape) with texture measurement is sufficient.

Assuming that there is no gradient in grain size through the sample and that the
ellipsoids have the same orientation, a homogeneous distribution of ellipsoids f (a, b,
c) is sufficient to represent the grain size and shape distribution. Even though the full
form of f (a, b, c) is impossible to calculate, one can approximate or estimate it by

f (a, b, c ) = f (a, b) · f (c | b). 3.

Both the joint probability distribution f (a, b) and the conditional probabilty distri-
bution f (c | b) can be obtained from the set of orthogonal orientation scans. The
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procedure to obtain these is described in detail elsewhere (39). The simulation do-
main is typically in the form of a cubical box whose dimensions are 1 × 1 × 1, although
in principle any rectangular form may be used. This box is populated with a sampling
of ellipsoids drawn from the distribution f (a, b, c). For this purpose, the distribution
function f (a, b, c) must be scaled appropriately. The values of the semiaxes a, b, and c
must be expressed in terms of fractions of the box size, in this case 1. For each ellipsoid
generated, the semiaxes are chosen from the given distribution function. This can
be done through the generation of values for a′, b′, and c′ such that 0 > a′ ≥ amax,
0 > b′ ≥ bmax, and 0 > c′ ≥ cmax, respectively. Next, a random number, say r1, is
generated. The choice of a′, b′, and c′ is accepted if f (a′, b′, c′) ≤ r1. If the choice is
accepted, then the ellipsoid is placed inside the simulation box by random choosing
of coordinates as its center. Thus, a set of overlapping ellipsoids is generated. The
total number of ellipsoids generated is 10 to 100 times the target number of grains.

Packing of ellipsoids. Out of this set of ellipsoids, only a minimal subset is retained
such that it optimally fills the simulation box. An optimal filling is defined as a system
having minimal overlap and maximum space filling. This could be achieved by the
solution of a many-body dynamics problem (see, for example, Reference 40). Because,
as discussed above, there is no theory to indicate a unique solution to this problem, the
approach discussed here uses Monte Carlo integration to approximate the packing.

A simulated annealing algorithm is used to choose a subset of the ellipsoids by
minimizing the system energy. The algorithm proceeds in the following manner.
A random subset of the ellipsoids is chosen from the original set such that the total
volume contained in the subset is approximately the same as the box volume. The total
energy of the system is evaluated whereby the energy is calculated in terms of overlap
and gaps between the ellipsoids contained in the simulation domain (39). This energy
is then minimized by a series of addition, subtraction, swap, and jog transactions. Any
transaction that reduces the energy is accepted. If a transaction increases the energy,
then it is accepted with a certain probability, depending on the amount of increase
(which is a user input). The transactions allowed are addition, in which a randomly
chosen ellipsoid is added to the existing set; subtraction, in which a randomly chosen
ellipsoid is taken out of the set; swap, in which a randomly chosen ellipsoid in the set
is replaced by another randomly chosen ellipsoid not in the set; and jog, in which a
randomly chosen ellipsoid is replaced by another ellipsoid contained in it.

The procedure discussed above generates an optimal set of ellipsoids that forms
the grain structure in the final microstructure. There may be regions within the
simulation box that are contained in more than one ellipsoid and others that are not
contained in any. The algorithm next invokes a Voronoi tessellation.

As discussed above, the requirement is to generate a nonoverlapping space-filling
structure that provides volumes of individual grains and their grain boundary ar-
eas. This is accomplished by utilizing the properties of Voronoi diagram V(P). The
Voronoi diagram divides the space into Voronoi regions, which by definition is a
nonoverlapping set. Computation of Voronoi diagrams can be carried out with the
qvoronoi program (http://www.qhull.org/). To generate the Voronoi regions, the
space is sampled randomly with a set of points S. For each of the sampled points in S,
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the number of ellipsoids, from the set defined above, in which it is contained can be
calculated. Out of these sampled points, only those contained in exactly one ellipsoid
are retained. That is, if a point is contained by more than one ellipsoid or is contained
in none, it is eliminated from S. Using this set S, we construct the Voronoi diagram
V(P). Brahme et al. (41) detail how this is implemented.

As the (Voronoi) cells themselves are nonoverlapping and space filling, the grains
are just collections of cells, are also nonoverlapping, and are space filling. Also, be-
cause each grain is closely related to its enclosing ellipsoid, the grains have a similar
shape and size distribution to that of the distribution function f (a, b, c) that was used to
generate the original set of ellipsoids. The detailed quantitative relationship between
these distributions, however, has yet to be determined. The output microstructure
obtained is in terms of Voronoi vertexes, edges, and patches. The volumes of each
subset of Voronoi cells that represents a grain are obtained and used in the orien-
tation assignment described below for calculating the orientation distribution. The
areas between each pair of grains are also calculated and used in the orientation as-
signment for the calculation of the misorientation distribution, as discussed in the
following section. Figure 1 illustrates the result of generating a microstructure with
850 grains for a case in which strongly elongated grains were required to match a
hot-rolled microstructure in a commercial purity aluminum alloy. The elongation
was accomplished by applying a stretch (affine transformation) to a Voronoi tessella-
tion that represented a nearly equiaxed structure and then sampling on a regular grid
for subsequent modeling of recrystallization with a Monte Carlo model (41). The
directions in the material are denoted by RD for rolling direction, which is the elon-
gation direction; TD for transverse direction; and ND for normal direction, which
is the compression direction. Equivalent designations are L for RD, T for TD, and
S for ND, from which the cross sections perpendicular to the RD, TD, and ND are
known as the ST, LS, and LT sections, respectively.

TD

ND
RD

Figure 1
Three-dimensional digital
microstructure obtained by
statistical reconstruction for
representation of a
hot-rolled commercial
purity aluminum alloy (41).
ND, normal direction; RD,
rolling direction; TD,
transverse direction.

www.annualreviews.org • 3-D Characterization of Microstructure by EBSD 637



ANRV315-MR37-19 ARI 28 March 2007 20:49

Grain Orientation
After establishing the geometry of the polycrystal, one can proceed to assign orien-
tations to the grains. If only the texture affects the property to be calculated, then
the objective function need only include the difference between the model orien-
tation distribution (OD) and the measured OD. The current version starts with a
random OD (but would be much more efficient with a sampled OD based on the
measurements). The input OD is discretized in orientation space so that the OD
of the digital microstructure can be compared, cell by cell, with the target (input)
texture (42). One can also use a method based on a spherical harmonic expansion by
calculating differences in values of the coefficients on the functions. If the property to
be calculated also depends on the grain boundary character, then the misorientation
distribution (MD) is also fitted. The current implementation also allows for the OD,
f (g), and MD, f (!g), to contribute (equal weight) to the objective function, S, as given
below (39). Evolution of the fitted orientations is most conveniently performed with
simulated annealing through the use of two types of change: swap of two orientations
and change in a single orientation.

S =
∑

i
(ODfitted( gi ) − ODmeasured( gi )) −

∑

j
(MDfitted(!g j ) − MDmeasured(!g j )). 4.

STATISTICAL RECONSTRUCTION: PARTICLE-BASED
AT LOW VOLUME FRACTION
In this section, we discuss the statistical reconstruction of microstructures in which the
key element is an ensemble of particles. In this case, orientations are not used because
the dominant effect of particles is on processes such as fatigue and recrystallization in
which the particles’ size, location, and shape dominate the properties (but not crystal
orientation). The primary characterization statistic is that of pair correlation functions
(PCFs), i.e., correlation in position in each cross section, made on at least three
different (orthogonal) section planes. In contrast to the problem of reconstructing
grain structures in which the component grains must fit together to fill space, it is
feasible to generate a separate reconstruction of the distribution of sizes, one that
is independent of location. For particles that are monodisperse (in size, shape), this
problem is well acknowledged and has semianalytical solutions for which the names
Cahn and Saltykov are well known in the materials literature (43, 44); for a historical
overview, see Underwood (45). Low volume fractions and noncontiguous particles
are assumed (<10%) for what follows; however, the practicable upper limit of volume
fraction has not been explored in this context. The most useful statistic for specifying
particle locations so far has proved to be that of PCFs, which have been extensively
developed by References 9, 39, and 46–50. An additional statistic that can be applied
is that of ranked neighbor distances (51). This latter statistic places more emphasis on
the nearby particles, whereas the PCF emphasizes medium to large particle spacings.
Reconstruction of representative digital microstructures for two-phase materials has
been discussed by several authors; see, for example, Rintoul & Torquato (52) and
Singh et al. (53). These researchers have specifically addressed reconstruction of

638 Rollett et al.



ANRV315-MR37-19 ARI 28 March 2007 20:49

1 mm

ND (S)

RD (L)

100 µm

Figure 2
Image of constituent
particles in AA7075, L-S
plane.

microstructures for discontinuously reinforced aluminum-based composites using
two-point correlation functions, which are closely related to the PCFs discussed
here.

The approach of reconstructing particle distributions based on PCFs is illustrated
with the case of an aerospace aluminum alloy. Samples were obtained from the bulk
of a two-inch-thick rolled AA7075 plate provided by the Alcoa Technical Center.
Details of the specimen preparation are given elsewhere (54). After all artifacts were
digitally removed, the images were binarized. The binarization of the images was
accomplished by the removal of small sections of the large image and the setting
of a threshold value for each section. Each binarized section was visually compared
with the original to determine the optimum threshold setting. After the optimum
threshold was achieved, the section was then placed back into the large stitched image.
Figures 2–4 present the large stitched images of each plane. The binarized images
were then converted to a pixel map format and analyzed. The algorithm locates each
particle center, calculates a PCF, and analyzes the size distribution of the particles.
To minimize the effects of noise, all particles smaller than two pixels are ignored, and
thus only particles with a diameter larger than 1.4 µm are included in the analysis.

ND (S)

RD (L)

1 mm

100 µm

Figure 3
Image of constituent
particles in AA7075, T-S
plane.
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ND (S)

RD (L)

1 mm

100 µm

Figure 4
Image of constituent
particles in AA7075, L-T
plane.

Pair Correlation Functions
PCFs have been used in particle-stimulated nucleation of recrystallization studies to
describe the placement of particles (48). The PCF is similar to the radial distribution
function, which is used in solid-state physics (8). The radial distribution function
gives the probability that a neighboring particle is located at a distance, r, in any
direction in two dimensions.

The main difference between the PCF as used here and the radial distribution
function is that the PCF is a function of both distance and angular orientation, whereas
the radial distribution function is a function of only distance. In two dimensions, the
PCF is a scalar function that defines the probability that a particle is located at the
origin (0, 0) and that a different particle is located at coordinates (x, y). One can think
of the PCF as the overlay of n copies of the image, one for each of n particles, where
each copy is translated so as to place the center of each particle (in turn) at the center
of the PCF; the intensity at each point in the PCF is then normalized by the number
of particles and the area fraction of the image occupied by the particles. The PCF is
calculated from a binarized image over a range of values for x and y according to

f (x, y) = 1
AA

n∑

i=1

Pi (x − ai , y − bi )∑
i

*i (x, y)
. 5.

Here n is the total number of particles, location (x, y) is referred to the origin of the
PCF at (0, 0), Pi is the intensity in the image at the relative location (x − a, y − b)
for the i th particle at (a, b), and the sum in the denominator is the number of pixels
that are within the boundaries of the image and contribute to the PCF at the location
(x, y). The number of particles that contribute depends on how close the point is to
the edge of the image.

Three-Dimensional Particle Structures
The incorporation of particles into a three-dimensional volume element is a four-step
process that is accomplished with the aid of three programs written in C. Step one is
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to calculate the PCFs of the particles from the binarized images. Step two is to create
a set of ellipses that match the size and angular orientation of the particles in the
two-dimensional image. An ellipse is created by first measuring a particle’s moment
of inertia. The ellipse’s major and minor axes are then selected so that the moments
of inertia of the ellipse match that of the particle. After three sets of ellipses have been
generated from the three orthogonal planes, histograms containing their semimajor
and semiminor axis lengths are created. In the third step, a set of ellipsoids is then
created so that histograms of the semiaxis lengths of the sectioned ellipsoids (i.e.,
each ellipsoid becomes an ellipse on the section plane) match the histograms of the
experimentally measured ellipses. This step is, in effect, a numerical implementation
of the stereological problem of inferring a distribution of three-dimensional objects
on the basis of cross-sectional information (45). The final step is to place the ellip-
soids into the three-dimensional volume element by matching the PCFs measured
from the three orthogonal two-dimensional images to cross sections taken from the
three-dimensional volume element. Figure 5 illustrates the results of developing a
population of ellipsoids and placing within a volume element according to the mea-
sured PCFs. The resulting distribution of particles is illustrated in Figure 6, in which
the stringering of the particles along the rolling direction is apparent.

At this stage of the development of the algorithms, EBSD is not a critical element
in the development of three-dimensional models of low-volume-fraction particle
populations such as the constituent particles in 7xxx series aluminum alloys illustrated
in Figure 4. However, there is known to be a correlation between particle positions
and grain boundaries (perhaps even triple lines) for which a combination of EBSD and
particle imaging will be required. Roberts et al. (55) have quantified the correlation
between particle position and interfaces in a Ni-base alloy as the particle-associated
misorientation distribution function.

MICROSTRUCTURAL EVOLUTION: PARTICLE-BASED
STRUCTURES AT HIGH VOLUME FRACTION
Although the packing method(s) described above can be applied to the case of two-
phase systems at high volume fractions (>50%), the result is unsatisfactory. One diffi-
culty is that, at high volume fractions, the larger particles undergo soft impingement
and are significantly distorted from regular ellipsoids. One way to address this type
of digital microstructure is to use a model of the process by which the microstructure
was generated. As an example, a recent effort generates representations of a W-Ni-Fe
system, using simulation of the liquid-phase sintering that is typically employed to
make this metal matrix composite.

A three-dimensional, Potts model of liquid-phase sintering (56) was developed
on the basis of previous work in two dimensions (57, 58). The system of interest
(W-Ni-Fe) exhibited full wetting of the solid. The kinetic Monte Carlo simulation
method was used to probe coarsening dynamics and the characteristics of the solid
particles, including the volume of critical nuclei and the distribution of particle size as
a function of time. As expected for diffusion-limited coarsening, the average particle
volume increases linearly with time. More importantly, the particle size distributions
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Figure 5
(Upper row) Pair correlation functions (PCFs) from experimental images for the RD-TD plane
(rolling plane or LT section), RD-ND plane (longitudinal cross section or LS section), and
TD-ND plane (transverse cross section or ST section). (Lower row) Corresponding PCFs
calculated from the fitted three-dimensional distribution of ellipsoids. Contour levels have
been multiplied by ten for easier viewing.

were nearly log-normal, which is consistent with those obtained experimentally, for
example, in the W-Ni-Fe and Sn-Pb systems (59). In the obtaining of these results,
careful consideration was given to the role of initial microstructural features in the
subsequent evolution of the system. The resulting microstructures have been ported
to a discretized fast-Fourier-transform model of plastic deformation for investigation
of the dependence of the mechanical response to variations in microstructure such
as contiguity between the W-rich particles. In this case, the use of EBSD is limited
to maps that provide information on particle size and shape as well as on contiguity
between particles that may be important to mechanical properties.
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TD

ND RD

Figure 6
Illustration (using PovRay)
of three-dimensional
distribution of ellipsoids
placed by the matching of
the PCFs in all three
orthogonal planes. The
rolling direction (RD) is
parallel to the
front-top-back direction in
the image.

STATISTICAL RECONSTRUCTION: LAYER-BASED FROM
SERIAL SECTIONS

Registration of Adjacent Layers

The electron opacity of most crystalline materials provides a serious challenge to the
complete characterization of the interfacial network. Full characterization of inter-
faces requires information about the inclination of the interfacial plane. Likewise, the
full characterization of triple junctions requires the description of the orientation of
the junction line itself. These data are inaccessible in a single-section characterization
of the network. Three-dimensional reconstruction here refers to registry between the
data upon any of the adjacent section planes obtained by calibrated (parallel) serial
sectioning. Various papers relevant to the issues associated with polycrystalline solids
(as opposed to the many articles in the biological literature) have been published on
this problem (27, 60).

Two approaches have been taken in connection with the aforementioned analysis;
these can also be combined. The first approach involves the use of external markers
that are in common between any two adjacent section planes. A common example
is the use of several hardness indentations that are observable on both planes. The
centroid of the matching pairs of indentations on each plane can be used as the
true and incorrect positions in Equation 6. The problem with external markers is
associated with the fact that these markings are typically quite large relative to the
features of interest in the microstructure. The determination of a precise location of
the centroid of these features can be problematic, and thus errors can be large.

When precise registry between adjacent section planes is necessary, it is useful to
employ internal markers. These are features of the microstructure itself that carry over
from one section plane to the next. Examples include the orientations and phases of
the grains themselves, the positions of triple junctions (as discussed below) and grain
boundaries, twin boundaries, etc. Usually the use of internal markers requires one
or more additional assumptions about the statistical nature of these markers’ distri-
bution in the microstructure. For example, it might be assumed that the orientation
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distribution of the triple junctions is uniform (i.e., there is no preferred direction
to the distribution of triple lines in the microstructure). The measured distribution
can then be compared with the uniform model distribution (with its associated geo-
metrical weighting factors) through Equation 5. In some instances (e.g., when twin
boundaries are present in the microstructure), additional statistical assumptions may
not be necessary.

The set of points {xi} associated with features in a specified two-dimensional pla-
nar section represents their reference positions, and the associated variable positions
in the adjacent section plane are given by {yi}. The relationship between reference
and variable positions for any point is given by a combination of a rigid body rotation,
R, and the translation vector, t, according to the expression

y = Rx + t. 6.

It is assumed that the component of the translation vector perpendicular to the section
plane is a known constant. It is also typical to assume that an exact correspondence
between the selected features common to both planes is known.

Generally, the coordinates of some number of features (e.g., boundaries, triple
points, indentations) are measured in their reference and variable positions. It is
then assumed that each point must be related in its reference and variable positions
by the same (R, t) transformation. Thus,

yi = Rxi + t (i = 1, 2, . . . , N ), 7.

where N is the number of feature points determined from the data. Experimental
errors and the changes in feature locations from one section to the next mean that the
relationships expressed in Equation 7 are only approximate, and a best fit for the trans-
formation (R, t) must be obtained by the minimization of the objective function, ψ ,

ψ =
∑

i
ωi (yi − (Rxi + t))2, 8.

where ωi is a nonnegative weight assigned to the i th feature point.
An inherent physical assumption in the minimization problem expressed by Equa-

tion 8 exists: There is no directional anisotropy present in the set of feature points used
in the analysis. For example, if common triple junctions are used as feature points,
it is assumed that the triple junctions are randomly distributed in all directions. In
cases in which this assumption is invalid, e.g., when materials have been subjected
to (simple) shear deformations, any bias in the character of the distribution must be
known to register the layers.

The minimization problem posed in Equation 8 has been widely applied for many
years in various fields. A solution for the translation vector is given as the difference
between the centroids of true and incorrect points according to the expression

t =
(

∑

i
ωi (yi − Rxi )

)/
∑

j
ω j . 9.

The rotation R can be obtained from the polar decomposition of a certain matrix
constructed from the xi and yi vectors (60). The method was applied to a small set
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of two (nearly) parallel sections, each of which was identified to have 190 triple
junctions. In this case, an affine transformation was allowed so that variable tilt and
stretch between the two sections could be accommodated to optimize the alignment.
The aligned sections were then used to extract true dihedral angles at all the triple
junctions to calculate relative grain boundary energies (61).

Considerable experience has been gained with serial sectioning in recent years.
Saylor et al. (62) have used serial sections to determine true dihedral angles in an MgO
specimen, from which they determined grain boundary energies over the full five
(macroscopic) degrees of freedom. The advent of techniques based around the focused
ion beam has generated renewed interest because of the possibility of automating the
sectioning while gathering orientation information on some or all of the section
planes (63–77).

Example of Reconstruction from Serial Sections
Figure 7 shows examples of EBSD maps of two adjacent layers from a series of cross
sections of a Ni-based alloy obtained through serial sectioning in a dual-beam system.
For both panels of Figure 7, the black and speckled regions represent the collection
of scanned pixels for which the EBSD system attempted to index a diffraction pattern
but was not able to produce a solution. The central region with well-indexed points
shows that a registration system based on orientation information must take into
account the local quality of the data available. As illustrated in Figure 7, the position
of the region of reliable data did not remain constant from layer to layer. For the
TSLTM system used in this instance, there are two indicators of quality, which are

Figure 7
Inverse pole figure maps of two adjacent sections of a Ni-based alloy. The thick red lines
illustrate the edges of the area with reliable data (left panel). The abrupt deviation of the area of
reliable data in the next layer (right panel) from the thick red lines indicates how each layer
drifts laterally during the milling and EBSD mapping. The data were collected and provided
by Air Force Research Laboratory (AFRL) via the FEITM system (73). The number of serial
sections was 96, and the area of each scanned section was approximately 2,500 µm2.
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known as confidence index (CI) and image quality (IQ). The confidence index (CI)
varies between −1 (poor) and 1 (good), and experience suggests that values above
approximately 0.1 are reliable. Examination of the IQ values for this specific example
suggested that poorly indexed pixels had IQ values below 100.

The registration was based on the assumption that the successive layers were
sufficiently parallel that the only adjustment required was a translation limited to
integer-valued shifts along x and y directions in each plane (i.e., the layers could be
assumed to be parallel to one another, with no rotations between layers). In terms of
Equations 6–9 above, this was equivalent to setting the rotation matrix, R, equal to the
identity matrix but allowing the translation vector, t, to vary. In place of identifying
specific microstructural features such as triple points, we used the orientation infor-
mation inherent in the EBSD maps to align the successive layers, which exhibited
significant displacements relative to one another (see Figure 7). The key assumption
is that the separation between adjacent sections is smaller than the grain size; when
this is true, each grain in a given section overlaps the corresponding grain in an adja-
cent section for a majority of its area. With the additional assumption that variations
in orientation within a grain may be neglected, it is then reasonable to equate optimal
registration with a minimum difference in orientation between pairs of pixels in the
adjacent layers.

Accordingly, the objective function, ψ , was equated to the average disorientation
〈D〉 and calculated as shown in Equation 10 as the average of the disorientation, !g,
between each well-indexed pixel in the upper layer and its one or more neighboring
pixels in the layer below, along with a weighting factor, ω, that decreases the contri-
bution to 〈D〉 from points in the layer below having a low confidence index and low
image quality. The expectation is that good alignment will generate a small average
disorientation between pixels in adjacent layers.

〈D(t)〉 = 1
N

∑

i
ωi!gi (t),

{
ωi = 1, if CIneigh ≥ 0.1 and IQneigh ≥ 100

ωi = (2.0 − 10.0 × CIneigh), otherwise
.

10.
Figure 8 illustrates the result of finding the minimum 〈D(t)〉 as a function of trans-

lation vector, t, for a particular pair of adjacent layers. The number of neighboring
pixels contributing to the calculation of average disorientation was limited to one for
this case, and the computation required a few minutes on a desktop computer. Notice
that a sharp minimum exists in the average disorientation as a function of translations
along the x and y directions, which identifies a particular translation, t = (dx, dy),
that can be used to register the two layers.

Three-Dimensional Microstructure from Serial Sections
Figure 9 illustrates the result of applying the above algorithm to the complete set of
96 layers of a Ni-based alloy. After registration, a cleanup procedure was applied: The
grains smaller than 30 voxels in volume were absorbed into their neighbor grains.
This cutoff size (30 voxels) was carefully chosen such that the grains eliminated were
smaller than the smallest grains associated with the dominant size distribution. These
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Figure 8
Average disorientation per
pixel in a layer as a function
of the translation in x and y
directions of the layer
below. The number of
nearest-neighboring pixels
included in the calculation
of Equation 10 is one. The
units of translation and
average disorientation are
pixels and degrees,
respectively. For a particular
alignment of the two layers,
a well-defined minimum
exists.

small “grains” were assumed to be either second-phase particles or poorly indexed
points. Because of the relatively low stacking fault energy in this alloy, a high density
of annealing twins was present in the material; these are evident as straight boundary
traces in the sections. Most of the reconstructed annealing twins in the cross sections
of the aligned structure also exhibited straight, flat sides, which suggests that the
registration procedure was reasonably successful.

Figure 9
Aligned three-dimensional
digital microstructure
obtained by registering the
layers with an objective
function based on average
disorientation between
neighboring pixels in
adjacent layers. In addition
to performance of the
registration, grains smaller
than a specified cutoff value
were removed from the
structure.
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Figure 10
Morphologies of selected grains in the three-dimensional reconstructed microstructure. The
individual grains were illustrated using different colors. The morphologies are equiaxed
(marked with dashed arrows), plate-like annealing twins (marked with circles), or straight and flat
sided (marked with bold arrows), suggesting that the alignment algorithm worked reasonably
well.

Three-dimensional morphologies of the grains were examined by visualizing ran-
domly selected grains to make sure that the proposed algorithm worked reasonably
well. In Figure 10, the reconstructed microstructure contains a mix of equiaxed bulk
grains; straight, flat-sided grains; and plate-like annealing twins. This again suggests
that the alignment was successful.

STATISTICAL ANALYSIS OF THREE-DIMENSIONAL
MICROSTRUCTURES
The aligned microstructure was analyzed for grain size distributions and for corre-
lations between size and topology and also between size and volume:surface ratios.
Grains that touch the exterior of the measured volume were excluded from the anal-
ysis, so 1325 out of a total of 1789 grains were measured. Distributions of the various
measures of the microstructure provide a straightforward comparison to results in
the literature. In Figure 11a, the distributions of radii, area, volume, nearest neigh-
bors, and volume:surface ratio follow a similar pattern to that observed previously
(78). Both the distributions of facets, F, and the volume:surface area ratios follow
the radius distribution quite closely. Figure 11b shows the same statistics for a
microstructure obtained from a Monte Carlo simulation of grain growth with
isotropic properties on a periodic 1303 grid and 1485 grains. The characteristics
of the distributions are similar to those in the measured microstructure, with the
following exception. The maximum reduced radius in the serial section data set lies
above three, which is substantially larger than the cutoff at 2.1 in the simulation data
set. Lastly, Figure 11c shows the same statistics for an equiaxed microstructure with
1490 grains, obtained from the statistical reconstruction process described above.
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Figure 11
Plots of the distributions of
normalized radius, area,
volume, number of nearest
neighbors (facets), and
volume:surface ratio. Lines
are drawn to guide the eye
but do not represent specific
functional forms. Both the
number of neighbors and
the volume:surface ratio
follow a similar distribution
to the radius. (a) Plot for the
serial section data set of a
Ni alloy. (b) Plot for a
microstructure obtained
from an isotropic grain
growth model (80). The
maximum reduced radius
has a cutoff slightly above 2.
(c) Plot based on a
reconstruction from
Microstructure Builder.
The maximum reduced
radius has a cutoff slightly
above 2 and is
approximately symmetrical
about R/〈R〉 = 1.

The radius distribution is very nearly symmetrical about the mean size and has a nar-
rower peak than that obtained with the measured microstructure or generated with
the Monte Carlo simulation method. In all three cases, the distributions of number of
nearest neighbors (facets) and the volume:size ratio follow the radius distribution quite
closely.
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(Continued )

Examining the relationship between the size and number of nearest-neighbor
grains (equal, obviously, to the number of facets) provides some insight into the rela-
tionship between linear dimension and the topological class. Here there are choices
to be made about the measure of linear size; we adopt the sphere-equivalent radius as
a simple measure of grain size, but many other possibilities, such as caliper diameter
and mean width, exist (79). Another useful probe is the ratio of volume to surface
area (V/A). This has dimensions of size, so the reasonable correlogram to plot is with
(sphere-equivalent) radius because this reveals characteristics of shape. A sphere has
a volume:surface ratio equal to 1/3, whereas, for example, a cube has a ratio of 1/6.

Figure 12 shows a plot of the number of nearest neighbors (also known as topo-
logical class) versus radius. As Liu et al. (78) note, it is possible to fit a straight line
through the data, but a quadratic function results in a slightly better and more reason-
able fit (with positive intercept on the vertical axis). For comparison with the Monte
Carlo simulation microstructure and a microstructure generated with the ellipsoid
packing algorithm described above, the respective data sets have been offset by 1 and
2 in the reduced radius.

The best fits to the data points for the Ni serial section, Monte Carlo, and Mi-
crostructure Builder data sets, respectively, are as follows:

F = 0.86 + 9.53 (R/〈R〉) + 1.06 (R/〈R〉)2,

F = 3.29 + 5.96 (R/〈R〉) + 3.45 (R/〈R〉)2,

F = 3.99 + 2.53 (R/〈R〉) + 6.40 (R/〈R〉)2.

The coefficients demonstrate a steady trend from nearly linear for the experimental
data set to more obviously quadratic for the Microstructure Builder data set.
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Figure 12
Plot of the number of
nearest-neighbor grains
(i.e., facets) against reduced
radius for three different
three-dimensional
microstructures. The Monte
Carlo and Microstructure
Builder radius values are
offset by 1 and 2,
respectively, for clarity.

Another interesting statistic that should reveal grain shape is the ratio of volume
to surface area (which has dimensions of length) divided by the (sphere-equivalent)
diameter to obtain a dimensionless number. When this ratio is plotted against ra-
dius (Figure 13) for the three different microstructures, significant variations are
apparent.

UNEXPLORED ISSUES
The alignment of serial exhibit a weaker texture than the largest grains, and as a
consequence sections by exploiting orientation information in the layers as intrin-
sic markers is subject to the basic error that it cannot detect the existence of a
shear strain in the microstructure. Although in principle extrinsic markers such as
hardness indents are not subject to this vulnerability, in practice we suspect that a
more secure check is orthogonal cross sections performed independently of the serial
sectioning.

Spatial correlation of orientations is very commonly found in materials, particu-
larly metallic alloys that have been subjected to extensive deformation by rolling,
extrusion, or wire drawing. Although the phenomenon is commonplace, dealing
with it in the reconstruction of three-dimensional microstructures is not necessarily
straightforward. One might imagine that serial sectioning or direct imaging in the
synchrotron would capture spatial correlation effects automatically. However, unless
the correlation is studied in a quantitative fashion, there is no guarantee that the
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Figure 13
Plots of volume:surface area divided by (sphere-equivalent) radius, against reduced radius, for
(a) the serial section data set; (b) the Monte Carlo data set, and (c) the Microstructure Builder
data set. The experimental microstructure (a) exhibits the widest variation; the low values of
volume:surface area may be associated with annealing twins. The Monte Carlo microstructure
(b) shows a much narrower range of volume:surface ratio at the upper end (close to 0.2),
suggesting more compact shapes than does the experimental structure. The Microstructure
Builder (c) structure exhibits a wider range of volume:surface area ratio but over a narrower
range of reduced radius.

volume sampled in serial sectioning will be large enough to provide a faithful rep-
resentation of the material. For statistical reconstruction methods, the existence of
spatial correlation means that a modified algorithm must be used for the assignment
of orientations. One possible approach is to use two-point orientation functions, as
Adams et al. (13) discuss. Such functions are computationally demanding, however,
because of the size of the space required, and it may be more practical to use simplified
measures of orientation coherence such as the disorientation correlation function as
introduced by Lee et al. (81).

The correlation of orientation with grain size can also occur in materials as a
result of microstructural evolution such as recrystallization. The group in Metz (82)
has clearly documented such a correlation in hexagonal metals such as titanium and
zirconium. In this example, the smallest grains the texture changes to that of the
largest grains during subsequent grain growth. The same comments about the impact
of orientation-location correlation discussed above apply to this type of correlation.

CONCLUSIONS
This review aims to convince the reader that three-dimensional characterization of
materials via automated EBSD is feasible, albeit at an early stage of development.
Digital microstructures, i.e., computer-based numerical descriptions, have been gen-
erated for a number of different materials and used as instantiations for calculations of
properties in both polycrystalline materials and two-phase materials. Both statistically
based reconstructions are feasible for polycrystals and composites. Furthermore, au-
tomated tools for serial sectioning using either metallographic techniques or ion beam
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milling, combined with EBSD, have made it possible to perform three-dimensional
characterization directly, albeit destructively.

SUMMARY POINTS

1. The topic of characterizing microstructures in three dimensions is discussed,
with a particular emphasis on using the widely available technique of auto-
mated EBSD in the scanning electron microscope.

2. Two main approaches are highlighted. One is statistical and uses data gath-
ered from sections on different planes to generate a grain structure and
then assign orientations to the individual grains. The second, more data-
intensive approach is to perform serial sectioning and reconstruct the three-
dimensional microstructure by optimizing the alignment or registration be-
tween adjacent layers. We present a new registration method that minimizes
the crystallographic misorientation between layers, thus exploiting the ori-
entation information inherent in the EBSD data sets.

3. The microstructural characteristics of a directly measured microstructure
are compared with those of three-dimensional microstructures obtained
from the statistical reconstruction method and from a three-dimensional
Monte Carlo simulation of grain growth.

4. The analysis of the three-dimensional spatial distribution of second-phase
particles whose alignment is important for the properties of the material
is discussed. An example of such a distribution is presented for a struc-
tural aluminum alloy that contains a few percent by volume of intermetallic
particles.
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